Fungal Strategies for the Remediation of Polycyclic Aromatic Hydrocarbons 107

Premnath, N., K. Mohanrasu, R. G. R. Rao, G. H. Dinesh, G. S. Prakash, V. Ananthi and A. Arun. 2021. A crucial

review on polycyclic aromatic Hydrocarbons-Environmental occurrence and strategies for microbial

degradation. Chemosphere.

280: 130608.

Punnapayak, H., S. Prasongsuk, K. Messner, K. Danmek and P. Lotrakul. 2009. Polycyclic aromatic hydrocarbons

(PAHs) degradation by laccase from a tropical white rot fungus Ganoderma lucidum. Afr. J. Biotechnol. 8(21).

Rafin, C., O. Potin, E. Veignie, L. H. Sahraoui and M. Sancholle. 2000. Degradation of benzo [a] pyrene as sole

carbon source by a non-white rot fungus, Fusarium solani. Polycycl. Aromat. Comp. 21(1/4): 311–330.

Ravelet, C., S. Krivobok, L. Sage and R. Steiman. 2000. Biodegradation of pyrene by sediment

fungi. Chemosphere. 40(5): 557–563.

Ritz, K. and I. M. Young. 2004. Interactions between soil structure and fungi. Mycologist.

18(2): 52–59.

Romero, M. C., M. I. Urrutia, H. E. Reinoso and M. M. Kiernan. 2010. Benzo [a] pyrene degradation by soil

filamentous fungi. J.

Yeast Fungal Res. 1(2): 025–029.

Rosales, E., M. Pazos and M. Ángeles Sanromán. 2013. Feasibility of solid‐state fermentation using spent fungi‐

substrate in the biodegradation of PAHs. CLEAN–Soil,

Air, Water. 41(6): 610–615.

Ruiz-Duenas, F. J., M. Morales, M. Pérez-Boada, T. Choinowski, M. J. Martínez, K. Piontek and Á. T. Martínez.

2007. Manganese oxidation site in Pleurotus eryngii versatile peroxidase: a site-directed mutagenesis, kinetic,

and crystallographic study. Biochemistry. 46(1): 66–77.

Sack, U., M. Hofrichter and W. Fritsche. 1997. Degradation of polycyclic aromatic hydrocarbons by manganese

peroxidase of Nematoloma frowardii. FEMS Microbiol. Lett. 152(2): 227–234.

Saiu, G., S. Tronci, M. Grosso, E. Cadoni and N. Curreli. 2016. Biodegradation of polycyclic aromatic hydrocarbons

by pleurotus sajor-caju. Chem. Eng. Trans. 49: 487–492.

Saraswathy, A. and R. Hallberg. 2002. Degradation of pyrene by indigenous fungi from a former gasworks site. FEMS

Microbiol. Lett. 210(2): 227–232.

Saraswathy, A. and R. Hallberg. 2005. Mycelial pellet formation by Penicillium ochrochloron species due to exposure

to pyrene. Microbiol. Res. 160(4): 375–383.

Schmidt, S. N., J. H. Christensen and A. R. Johnsen. 2010. Fungal PAH-metabolites resist mineralization by soil

microorganisms. Environ. Sci. Technol. 44(5): 1677–1682.

Show, B. K., S. Banerjee, A. Banerjee, R. GhoshThakur, A. K. Hazra, N. C. Mandal and S. Chaudhury. 2022. Insect

gut bacteria: a promising tool for enhanced biogas production. Rev

. Environ. Sci. Biotechnol., 1–25.

Sigoillot, J. C., J. G. Berrin, M. Bey, L. Lesage-Meessen, A. Levasseur, A. Lomascolo and E. Uzan-Boukhris. 2012.

Fungal strategies for lignin degradation. Adv. Bot. Res., 263–308.

Silva, I. S., M. Grossman and L. R. Durrant. 2009. Degradation of polycyclic aromatic hydrocarbons (2–7 rings) under

microaerobic and very-low-oxygen conditions by soil fungi. Int. Biodeterior

. Biodegrad. 63(2): 224–229.

Sipilä, T. P., P. Väisänen, L. Paulin and K. Yrjälä. 2010. Sphingobium sp. HV3 degrades both herbicides and

polyaromatic hydrocarbons using ortho-and meta-pathways with differential expression shown by RT-PCR.

Biodegradation. 21(5): 771–784.

Srivastava, S. and M. Kumar. 2019. Biodegradation of polycyclic aromatic hydrocarbons (PAHs): a sustainable

approach. In Sustainable Green Technologies for Environmental Management. pp. 111–139. Springer,

Singapore.

Steffen, K. T., M. Hofrichter and A. Hatakka. 2002. Purification and characterization of manganese peroxidases from

the litter-decomposing basidiomycetes Agrocybe praecox and Stropharia coronilla. Enzyme Microb. Technol.

30(4): 550–555.

Sutherland, J. B. 1992. Detoxification of polycyclic aromatic hydrocarbons by fungi. J. Ind. Microbiol. Biotech. 9(1):

53–61.

Syed, K., H. Doddapaneni, V. Subramanian, Y. W. Lam and J. S. Yadav. 2010. Genome-to-function

characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons

(PAHs). Biochem. Biophys. Res. Commun. 399(4): 492–497.

Syed, K., A. Porollo, Y. W. Lam and J. S. Yadav. 2011. A fungal P450 (CYP5136A3) capable of oxidizing polycyclic

aromatic hydrocarbons and endocrine disrupting alkylphenols: role of Trp129 and Leu324. PloS one.

6(12):

28286.

Syed, K., A. Porollo, Y. W. Lam, P. E. Grimmett and J. S. Yadav. 2013. CYP63A2, a catalytically versatile fungal

P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons,

alkylphenols, and alkanes. Appl. Environ. Microbiol. 79(8): 2692–2702.

Tavares, A. P. M., M. A. Z. Coelho, M. S. M. Agapito, J. A. P. Coutinho and A. Xavier. 2006. Optimization and

modeling of laccase production by Trametes versicolor in a bioreactor using statistical experimental design.

Appl. Biochem. Biotechnol. 134: 233–248.